Chapters 15 \& 16 Study Questions

(Use tables in Chapters 14 and 15 as needed.)

1. Compare the following titration curves with respect to i) steepness of curve at equivalence, ii) pH at the start of the titration, iii) pH at equivalence, iv) is there buffer at half-equivalence:
a) strong acid titrated with strong base.
b) weak acid titrated with strong base.
c) weak base titrated with strong acid.
2. Use Figure 15.8, page 749 , as needed to answer the following:
a) What is the color of bromthymol blue at pH 9 ?
b) At what pH is methyl red orange?
c) What is the K_{a} of an indicator that changes color at pH 3.5 ?
d) What is a good indicator to use when titrating sodium nitrite $\left(\mathrm{NaNO}_{2}\right)$ with HCl ?
3. How many ml of $2.00 \mathrm{M} \mathrm{HNO}_{3}$ would be required to neutralize 12.5 ml of $0.0800 \mathrm{M} \mathrm{NH}_{3}$? (optional: What is the pH of the resulting solution?)
4. Amy wants to prepare a buffer with a pH of 5.00 .
a) What ratio of $\mathrm{CH}_{3} \mathrm{COO}^{-} / \mathrm{CH}_{3} \mathrm{COOH}$ does she need?
b) How could she mix $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $0.100 \mathrm{M} \mathrm{NaCH}_{3} \mathrm{COO}$ to make this buffer?
c) How could she make this buffer using $0.100 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and 0.100 M NaOH ?
d) Name another buffer system she could use.
5. What is the pH of a solution made by mixing
a) 750 ml of 0.400 M NaOH and 250 ml of 0.800 M HCl ?
b) 100 ml of $0.100 \mathrm{M} \mathrm{NaHCO}_{3}$ and $200 \mathrm{ml} 0.100 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$? (K_{a} for $\mathrm{H}_{2} \mathrm{CO}_{3}$ is 4.4×10^{-7})
6. The solubility of MgCl_{2} at $25^{\circ} \mathrm{C}$ is approximately $8.0 \mathrm{~g} \mathrm{MgCl}_{2} / 100 \mathrm{~g}$ water. Assuming the solution has a density of $1.00 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the concentration of MgCl_{2} in a saturated solution in moles/liter and then calculate $K_{s p}$ for MgCl_{2}.
7. The $K_{s p}$ for CuCrO_{4} is 3.6×10^{-6}. What is the molarity of a saturated solution of CuCrO_{4} ?
8. Silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ is added to a solution of 0.020 M sodium carbonate. At what concentration of AgNO_{3} does a precipitate start to form?
9. A solution is prepared by mixing 50.0 ml of 0.0100 M lead(II) nitrate with 50.0 ml of 0.0200 M sodium bromide. Will a precipitate form?
10. Write balanced chemical equations for
a) the reaction when strong acid is added to $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$ buffer.
b) the ionization in water of silver phosphate. Write an expression for $K_{s p}$ for this reaction.
11. What is the molar mass of an acid if 0.422 g of the acid are neutralized by 17.5 mL of 0.268 M NaOH ?

Summary of Chapters 15 \& 16: Applications of Aqueous Equilibria

```
acid-base reactions
buffers
    how they work
    significance of pK}\mp@subsup{K}{a}{}\mathrm{ of buffer
    Henderson-Hasselbach equation
    calculations relating [\mp@subsup{A}{}{-}]/[HA] to pH
    how to prepare buffers
acid-base titrations
    equivalence point
    shape of titration curves
    relation of strength of acid or base to pH
        of equivalence point
pH indicators
    relevance of }p\mp@subsup{K}{a}{}\mathrm{ of indicator
K
    expression for }\mp@subsup{K}{sp}{
    calculations of equilibrium
            concentrations from K}\mp@subsup{K}{sp}{}\mathrm{ and vice versa
    relationship to extent of solubility
calculations of concentrations of ions that form precipitates
common ion effect
```

